Mdn Web Development
tl;dr; The old /favicon.ico
was 15KB and due to bad caching was downloaded 24M times in the last month totaling ~350GB of server-to-client traffic which can almost all be avoided.
How to save the planet? Well, do something you can do, they say. Ok, what I can do is to reduce the amount of electricity consumed to browse the web. Mozilla MDN Web Docs, which I work on, has a lot of traffic from all over the world. In the last 30 days, we have roughly 70M pageviews across roughly 15M unique users.
A lot of these people come back to MDN more than once per month so good assets and good asset-caching matter.
I found out that somehow we had failed to optimize the /favicon.ico
asset! It was 15,086 bytes when, with Optimage, I was quickly able to turn it down to 1,153 bytes. That's a 13x improvement! Here's what that looks like when zoomed in 4x:
The next challenge was the Cache-Control
. Our CDN is AWS Cloudfront and it respects whatever Cache-Control
headers we set on the assets. Because favicon.ico
doesn't have a unique hash in its name, the Cache-Control
falls back to the default of 24 hours (max-age=86400) which isn't much. Especially for an asset that almost never changes and besides, if we do decide to change the image (but not the name) we'd have to wait a minimum of 24 hours until it's fully rolled out.
Mobile web development This article provides an overview of some of the main techniques needed to design web sites that work well on mobile devices. See also Firefox for Android. MDN Web Docs Data and tools related to MDN Web Docs (formerly Mozilla Developer Network, formerly Mozilla Developer Center.).
Another thing I did as part of this was to stop assuming the default URL of /favicon.ico
and instead control it with the <link href='/favicon.323ad90c.ico' type='image/x-icon'>
HTML meta tag. Now I can control the URL of the image that will be downloaded.
Our client-side code is based on create-react-app
and it can't optimize the files in the client/public/
directory.
So I wrote a script that post-processes the files in client/build/
. In particular, it looks through the index.html
template and replaces...
...with...
Plus it makes a copy of the file with this hash in it so that the old URL still resolves. But now can cache it much more aggressively. 1 year in fact.
In summary
Combined, we used to have ~350GB worth of data sent from our CDN(s) to people's browsers every month.
Just changing the image itself would turn that number to ~25GB instead.
The new Cache-Control hopefully means that all those returning users can skip the download on a daily basis which will reduce the amount of network usage even more, but it's hard to predict in advance.
Related posts
- Previous:
- How to simulate slow lazy chunk-loading in React25 March 2021
- Related by category:
- Fastest way to find out if a file exists in S3 (with boto3)16 June 2017Web development
- How to throttle AND debounce an autocomplete input in React01 March 2018Web development
- How to create-react-app with Docker17 November 2017Web development
- Be very careful with your add_header in Nginx! You might make your site insecure11 February 2018Web development
- Displaying fetch() errors and unwanted responses in React06 February 2019Web development
- Related by keyword:
- favicon2dots12 February 2007
tl;dr: Periodically, the whole of MDN is built, by our Node code, in a GitHub Action. A Python script bulk-publishes this to Elasticsearch. Our Django server queries the same Elasticsearch via /api/v1/search
. The site-search page is a static single-page app that sends XHR requests to the /api/v1/search
endpoint. Search results’ sort-order is determined by match and “popularity”.
Jamstack’ing
The challenge with “Jamstack” websites is with data that is too vast and dynamic that it doesn’t make sense to build statically. Search is one of those. For the record, as of Feb 2021, MDN consists of 11,619 documents (aka. articles) in English. Roughly another 40,000 translated documents. In English alone, there are 5.3 million words. So to build a good search experience we need to, as a static site build side-effect, index all of this in a full-text search database. And Elasticsearch is one such database and it’s good. In particular, Elasticsearch is something MDN is already quite familiar with because it’s what was used from within the Django app when MDN was a wiki.
Note: MDN gets about 20k site-searches per day from within the site.
Build
When we build the whole site, it’s a script that basically loops over all the raw content, applies macros and fixes, dumps one index.html
(via React server-side rendering) and one index.json
. The index.json
contains all the fully rendered text (as HTML!) in blocks of “prose”. It looks something like this:
You can see one here: /en-US/docs/Web/index.json
Indexing

Next, after all the index.json
files have been produced, a Python script takes over and it traverses all the index.json
files and based on that structure it figures out the, title, summary, and the whole body (as HTML).
Next up, before sending this into the bulk-publisher in Elasticsearch it strips the HTML. It’s a bit more than just turning <p>Some <em>cool</em> text.</p>
to Some cool text.
because it also cleans up things like <div>
and certain <div>
blocks.
One thing worth noting is that this whole thing runs roughly every 24 hours and then it builds everything. But what if, between two runs, a certain page has been removed (or moved), how do you remove what was previously added to Elasticsearch? The solution is simple: it deletes and re-creates the index from scratch every day. The whole bulk-publish takes a while so right after the index has been deleted, the searches won’t be that great. Someone could be unlucky in that they’re searching MDN a couple of seconds after the index was deleted and now waiting for it to build up again.
It’s an unfortunate reality but it’s a risk worth taking for the sake of simplicity. Also, most people are searching for things in English and specifically the Web/
tree so the bulk-publishing is done in a way the most popular content is bulk-published first and the rest was done after. Here’s what the build output logs:
So, yes, for 3m 35s there’s stuff missing from the index and some unlucky few will get fewer search results than they should. But we can optimize this in the future.
Searching
The way you connect to Elasticsearch is simply by a URL it looks something like this:
It’s an Elasticsearch cluster managed by Elastic running inside AWS. Our job is to make sure that we put the exact same URL in our GitHub Action (“the writer”) as we put it into our Django server (“the reader”).
In fact, we have 3 Elastic clusters: Prod, Stage, Dev.
And we have 2 Django servers: Prod, Stage.
So we just need to carefully make sure the secrets are set correctly to match the right environment.
Mdn Web Development Software
Now, in the Django server, we just need to convert a request like GET /api/v1/search?q=foo&locale=fr
(for example) to a query to send to Elasticsearch. We have a simple Django view function that validates the query string parameters, does some rate-limiting, creates a query (using elasticsearch-dsl
) and packages the Elasticsearch results back to JSON.
How we make that query is important. In here lies the most important feature of the search; how it sorts results.
In one simple explanation, the sort order is a combination of popularity and “matchness”. The assumption is that most people want the popular content. I.e. they search for foreach
and mean to go to /en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
not /en-US/docs/Web/API/NodeList/forEach
both of which contains forEach
in the title. The “popularity” is based on Google Analytics pageviews which we download periodically, normalize into a floating-point number between 1 and 0. At the time of writing the scoring function does something like this:
This seems to produce pretty reasonable results.
But there’s more to the “matchness” too. Elasticsearch has its own API for defining boosting and the way we apply is:

- match phrase in the
title
: Boost = 10.0 - match phrase in the
body
: Boost = 5.0 - match in
title
: Boost = 2.0 - match in
body
: Boost = 1.0
This is then applied on top of whatever else Elasticsearch does such as “Term Frequency” and “Inverse Document Frequency” (tf and if). This article is a helpful introduction.
We’re most likely not done with this. There’s probably a lot more we can do to tune this myriad of knobs and sliders to get the best possible ranking of documents that match.
Web UI
The last piece of the puzzle is how we display all of this to the user. The way it works is that developer.mozilla.org/$locale/search
returns a static page that is blank. As soon as the page has loaded, it lazy-loads JavaScript that can actually issue the XHR request to get and display search results. The code looks something like this:
A lot of interesting details are omitted from this code snippet. You have to check it out for yourself to get a more up-to-date insight into how it actually works. But basically, the window.location
(and pushState
) query string drives the fetch()
call and then all the component has to do is display the search results with some highlighting.
The /api/v1/search
endpoint also runs a suggestion query as part of the main search query. This extracts out interest alternative search queries. These are filtered and scored and we issue “sub-queries” just to get a count for each. Now we can do one of those “Did you mean…”. For example: search for intersections
.
Mozilla Web Developer
In conclusion
There are a lot of interesting, important, and careful details that are glossed over here in this blog post. It’s a constantly evolving system and we’re constantly trying to improve and perfect the system in a way that it fits what users expect.
A lot of people reach MDN via a Google search (e.g. mdn array foreach
) but despite that, nearly 5% of all traffic on MDN is the site-search functionality. The /$locale/search?...
endpoint is the most frequently viewed page of all of MDN. And having a good search engine that’s reliable is nevertheless important. By owning and controlling the whole pipeline allows us to do specific things that are unique to MDN that other websites don’t need. For example, we index a lot of raw HTML (e.g. <video>
) and we have code snippets that needs to be searchable.
Hopefully, the MDN site-search will elevate from being known to be very limited to something now that can genuinely help people get to the exact page better than Google can. Yes, it’s worth aiming high!
(Originally posted on personal blog)
About Peter Bengtsson
Peter is a senior web developer at Mozilla working on MDN Web Docs. He writes more opinionated nerdery on www.peterbe.com
